DATE: Distributed Adaptive Traffic Engineering

Jiayue He
Dept. of EE, Princeton University
Email: jhe@princeton.edu

I. INTRODUCTION

Congestion in the network causes poor throughput and long
delays for end users, and also leads to an inefficient usage
of network resources. In the Internet today, end users run the
Transmission Control Protocol (TCP) to adapt their sending
rates to congestion. Independently, Internet Service Providers
(ISPs) monitor their networks for signs of overloaded links
and adapt routing to alleviate congestion in a process known
as traffic engineering (TE). The current state of the art for
TE occurs at the timescale of hours and is centralized [1],
[2], [3]. As traffic patterns shift on the order of seconds, a
dynamic and distributed TE is an attractive alternative. Yet,
previous research on load-sensitive routing [4], [S] has shown
that dynamic, distributed routing is prone to instability. More
recently, there have been proposals for online multipath traffic
engineering, namely MATE [6] and TeXCP [7]. They have
both made strides in showing it is possible to achieve stable
distributed dynamic traffic engineering.

Still, both MATE and TeXCP ignore the congestion con-
trol. We propose a distributed adaptive traffic engineering
(DATE) algorithm. DATE stands out from previous work by
simultaneously satisfying the needs of users and ISPs. Each
user wants to maximize their own utility (e.g.a function of
throughput or delay) and ISPs want to efficiently use network
resources. These needs can be at odds with each other, and
DATE aims to balance them. There is an alternative body of
work which studies multipath congestion control, as in [8],
[9], [10]. Those works are purely theoretical, however, and
ignore implementation and deployment issues.

The design goals for DATE can be summarized as follows:

1) Distributed: in order to adapt at a small timescale, the
algorithm should not require centralized computation or
a full network view.

2) Optimal: the algorithm must maximize a weighted sum
of user and operators’s objectives.

3) Stable: the algorithm should converge quickly and not
have oscillatory behavior.

4) Implementable: only a limited number of changes to a
limited number of routers is required.

5) Efficient: the computations should be efficient and not
prevent the routers from performing other functions.

In the following section, we introduce the notion of con-

sistency price to lead to a distributed gradient algorithm

This work was supported NSF grant CNS-0519880 and Cisco grant
GH072605.

Mung Chiang,
Dept. of EE, Princeton University
Email: chiangm@princeton.edu

Jennifer Rexford,
Dept. of CS, Princeton University
Email: jrex @cs.princeton.edu

that avoids the classical instability problem associated with
dynamic routing. Section II describes how DATE works and
Section III addresses implementation issues. We talk about
ongoing plans for simulation and experimentation in Section
IV. Finally, we provide the theoretical background to prove
the convergence of DATE to a global optimum TE in Section
V and conclude in Section VI.

II. DATE ALGORITHM

In this section we describe the DATE algorithm, as graphi-
cally illustrated in Figure 1.

max. U(17z)+ Y5, Y H;'Z;

v 1
Edge Routers Links
- Calculate ', - Caleulate y,
- Rate limit incoming traffic - Update p, s using y,

I 'l
min. f(y,/c) + (sip)y,

Fig. 1. A graphical view of DATE algorithm.

Like its TE predecessors, DATE is limited to a single AS
where the topology is known and routing can be controlled.
DATE denotes each TCP session ¢’s concave utility function
as U;(x;), where z; is the transmission rate. Following ap-
proaches in TE studies [1], [3], candidate routing solutions are
evaluated based on a convex, increasing cost function f(u;),
where w; is the link utilization.

The DATE algorithm uses fwo kinds of link prices: (i) con-
gestion price {p;} and (ii) consistency price {s;}. Congestion
prices implicitly exist in the Internet e.g. queuing delay, and
they ensure the capacity constraints ¢; are not violated at
equilibrium. One potential reason for instability in a dynamic
distributed algorithm is that the routing algorithm reacts only
to the measured load on each link, rather than some notion
of a reasonable farget load. Here we introduce the notion of
consistency price to ensure a matching between measured link
load and target link load at equilibrium.

Let the underlay topology be defined by H, where j indexes
to the multiple paths of 7. Let the time for feedback from each
core router be 7T}, note that 7T}, must be greater than the round
trip time (RTT) plus the time it takes for each core router to
compute its feedback.

DATE Algorithm
Core Routers:

e Core Router Problem:

yi(t + Tp) = minimizey, f(y;/c1) + (s1(t) — pi(t))yi-

where y; is the target load.
o Congestion Price Update:

pi(t+Tp) = [pr(t) = Bpler —wi(®)]T,

where (3, is the congestion price step-size. Since, p; > 0, it must be
mapped to a non-negative value.
o Consistency Price Update:

i g

where (s is the consistency price step-size.
Edge Routers:

2% (t + Tp) = maximize ; U; (17 2%) 4 Z si(t) Z Hfj zj-
l J

where z¢ is the amount of load that TCP session i places on its j*" path and

— 1
7 et

In a DATE network, edge and core routers work together to
balance load, limit the incoming traffic rate and route around
failures. Every core router first measures the link load of all
the links connected to it. Then it computes the new target load
y; for each link using information from both prices which are
updated using the gradient method, based on local information
at each link.

Each edge router probes for explicit feedback s; from the
routers along the paths used by each ingress-egress (IE) pair.
Using this information, each edge router tries to maximize
the utility for the end hosts indexed by 7 connected to it. This
local maximization is conducted over a vector z° for each TCP
session ¢, as opposed to only a scalar z; as in the standard TCP
congestion control. This captures the edge routers balancing
load over multiple paths. Each edge router then rate limits the
incoming traffic rate to z; for an end-host.

Finally, since there is explicit feedback expected every 7,
if feedback is not received in a timely fashion from a particular
link, that link is most likely failed or heavily congested. Hence
the explicit feedback mechanism also helps to divert traffic
from failed or heavily congested paths quickly.

III. IMPLEMENTATION AND DEPLOYMENT

This section examines the practical considerations for an
ISP to deploy DATE.

A. Implementation Possibilities

For this section, we assume IE paths are pinned using MPLS
Label Switched Paths (LSPs). Here are some existing technol-
ogy which will establish the foundation for deployment.

1) Number of LSPs: Each ISP has 200-300 egress points, SO
if we create LSPs between each IE pair, there is quite a
lot of such LSPs. On the other hand, since traffic on the

ISP backbone moves from essentially from one PoP to
another, we only need to create DATE tunnels between
PoPs rather than between ingress-egress routers. For an
ISP, there are only 20-100 PoPs, making the number of
tunnels much more tractable.

2) Traffic Splitting: DATE requires edge routers to split
traffic among the LSPs connecting an IE pair. Current
ISP-class routers can split traffic to a destination between
as many as 16 LSPs.

3) Utilization Estimates: DATE needs all routers to esti-
mate link utilization. This is currently already done by
the data plane of all routers. Basically, all current routers
keep track of the amount of traffic sent on each data bus
in a counter. These counters can be read every T}, to get
a utilization estimate. In fact, routers already do this to
support the Simple Network Management Protocol.

In general, DATE needs one extra function at the edge
routers: per flow traffic policing. The edge routers determine
the allowed rate of each flow and limit the incoming traffic
by dropping packets sent above the allowed rate. The existing
congestion control mechanism should let the end hosts adapt
their rate when their packets are getting dropped.

Price updates are straight forward matrix multiplications.
Updating y; and z; involve solving a convex optimization
problem which is also not computationally intensive. In terms
of the calculations involved for edge and core routers, there
are three potential ways to implement them. We are currently
in discussion with Cisco with regards to which option is the
most feasible.

1) Alternative Entity: One possibility is to have all the
link utilizations collected by a central routing platform
such as the one proposed in [11]. This alternative entity
can perform all the per link calculations to generate the
consistency prices per link and calculate the traffic per
path for each TCP session. The plus side is that there
will be no extra load placed on the CPU of routers, but
it requires the deployment of an alternate entity.

2) Edge Routers: Another possibility is for the core routers
to send link utilization to the edge routers, and for edge
router CPUs to do all the computation.

3) Core Routers CPU: The third approach is for each
core router to update its own target load, congestion
price, and consistency price. These computations can be
handled by it’s control plane (CPU). Instead of the link
utilization, the consistency price is fed back from each
core router to the edge routers every 7T},. This introduces
less computational overhead, since consistency price
wouldn’t be repeatedly computed by many IE pairs that
direct traffic over the same link. The trade-off is that
more software functionality needs to be placed in all
core routers.

B. Incremental Deployment

While DATE and TeXCP are quite different approaches,
they both establish IE pairs, fix the usable paths and get link
utilization as an explicit feedback per link. Deploying TeXCP

is simpler than DATE as it only requires software modification
at the edge routers and no hardware modifications. The relative
simplicity of TeXCP is not surprising given its objective is
limited to minimizing the maximum link utilization in a given
network. Hence, TeXCP can be thought of as an incremental
step towards deploying DATE.

IV. ONGOING WORK

Before actual deployment, it is essential to thoroughly
test DATE’s performance in realistic network environments.
Similar to prior work [7], we use Rocketfuel backbone topolo-
gies inferred with annotated with inferred weights and link
latencies [12]. We also estimate the number of users between
every pair of PoPs. The following experiments are planned:

o Convergence Properties: Convergence time and the
smoothness of convergence is an important aspect which
needs to examined. Potential factors which affect this
include: step size of congestion price, step-size of consis-
tency price, frequency of feedback and feedback delay.

o Practical Concerns: How long would it take current
routers to do the necessary computations within its own
CPU? This will help us determine which of the three
potential ways for implementation is the most deployable.
In general, the frequency of feedback required and the
number of LSPs needed would also have a big effect on
whether DATE can be deployed. Therefore, the minimum
frequency for feedback and the minimum number of LSPs
needed would be useful parameters to determine.

o Comparison with Other Work: We can compare the
convergence properties of DATE with TeXCP and MATE.
We can also compare with the control theoretical work
[91, 8], [10].

V. THEORETICAL BACKGROUND

The objective of each individual user is to maximize its
own utility. This is well captured in today’s congestion control
mechanism, as shown e.g. in [13], [14]. Reverse engineering
shows in a network where each TCP session is indexed by i,
the following optimization is implicitly solved by TCP:

maximize), U;(z;) (1)
subject to Rz = c.

The goal is to maximize aggregate user utility U;(z;) by
varying source rate x with routing R fixed, subject to the
linear flow constraint that link loads cannot exceed capacity.

On the other hand, the operators running a backbone net-
work measures the offered load between each ingress-egress
pair z;. Based on the traffic matrix, the operators try to find
the best routing matrix R to minimize network congestion.
The utilization of link [is w; =), Rj;z;/¢;. To penalize
routing configurations that congest the links, candidate routing
solutions are evaluated based on a cost function f(w;) that in-
creases steeply as wu; approaches 1. The following formulation
has been discussed in [1], [3]:

minimize Y, (3", Riuzi/c). (2)

By considering the total link cost rather than trying to min-
imize a single bottleneck, the optimization framework would
prefer a solution that utilizes a single link at 91% over one
that loads many links at 90%.

A natural formulation that accounts for the network opera-
tor’s goals in addition to end-user utilities is:

maximize) . Us;(x;) — >, f(O2,; Ruixi/cr) 3)
subject to Rz =<c¢, z >~ 0.

This objective favors a solution with that provides both high
aggregate utility and a low overall network congestion, to
satisfy the goals of users and operators alike.

The following theorems can be proved (skipping the proof
due to space limitation).

Theorem 1: The distributed algorithm DATE converges to a
joint optimum of (3) for sufficiently small step sizes (8, 3s).

Theorem 2: When sessions arrive according to Poisson
distribution each carrying a finite workload exponentially
distributed, DATE Algorithm remains stochastically stable if
the traffic load is within the interior of the feasible region in

3).
VI. CONCLUSIONS

In this paper we present DATE, a distributed, stable and op-
timal algorithm. We have also considered DATE’s implemen-
tation issues and the possibility of incremental deployment.
Finally, we have outlined plans for evaluating convergence
time and efficiency through simulation.

REFERENCES

[1] B. Fortz and M. Thorup, “Optimizing OSPF weights in a changing
world,” IEEE JSAC, vol. 20, pp. 756-767, May 2002.

[2] D. Mitra and K. Ramakrishna, “A Case Study of Multiservice Mul-
tipriority Traffic Engineering Design,” in Proc. IEEE GLOBECOM,
December 1999.

[3] J. Rexford, “Route optimization in IP networks,” in Handbook of Op-
timization in Telecommunications, Springer Science + Business Media,
February 2006.

[4] J. M. McQuillan and D. C. Walden, “The ARPA network design
decision,” Computer Networks, vol. 1, pp. 243-289, August 1977.

[5] Z. Wang and J. Crowcroft, “Analysis of shortest-path routing algorithm
in dynamic network environment,” ACM SIGCOMM Computer Commu-
nication Review, vol. 22, pp. 63-71, April 1992.

[6] A. Elwalid, C. Jin, S. H. Low, and 1. Widjaja, “MATE: MPLS Adaptive
Traffic Engineering,” in Proc. IEEE INFOCOM, April 2001.

[7]1 S. Kandula and D. Katabi, “Walking the Tightrope: Responsive Yet
Stable Traffic Engineering,” in Proc. ACM SIGCOMM, August 2005.

[8] X. Lin and N. B. Shroff, “Utility Maximization for Communication
Networks with Multi-path Routing,” IEEE Trans. Automatic Control,
2006. To appear.

[9]1 H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley, “Overlay

TCP for Multi-Path Routing and Congestion Control,” in Proc. IMA

Workshop on Measurement and Modeling of the Internet, January 2004.

R. J. Gibben and F. Kelly, “On packet marking at priority queues,” IEEE

Trans. Automatic Control, vol. 47, pp. 1016-1020, December 2002.

A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Meyers, J. Rexford,

G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4D approach

to network control and management,” ACM SIGCOMM Computer

Communication Review, October 2005.

N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Inferring Link

Weights using End-to-End Measurements,” in Proc. Internet Measure-

ment Workshop, 2002.

S. H. Low, “A duality model of TCP and queue management algorithms,”

IEEE/ACM Trans. Networking, vol. 11, pp. 525-536, August 2003.

R. Srikant, The Mathematics of Internet Congestion Control. Birkhauser,

2004.

[10]

[11]

[12]

[13]

[14]

